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Kinematic distributions in the decays of the newly discovered resonance to four leptons are a
powerful probe of the tensor structure of its couplings to electroweak gauge bosons. We present
analytic calculations for both signal and background of the fully differential cross section for the
‘Golden Channel’ e+e−µ+µ− final state. We include all interference effects between intermediate
gauge bosons and allow them to be on- or off-shell. For the signal we compute the fully differential
decay width for general scalar couplings to ZZ, γγ, and Zγ. For the background we compute the
leading order fully differential cross section for qq̄ annihilation into Z and γ gauge bosons, including
the contribution from the resonant Z → 2e2µ process. We also present singly and doubly differential
projections and study the interference effects on the differential spectra. These expressions can be
used in a variety of ways to uncover the nature of the newly discovered resonance or any new scalars
decaying to neutral gauge bosons which might be discovered in the future.

I. INTRODUCTION

With the recent discovery of a new resonance at the
LHC [1, 2] the focus now shifts to the determination of
its detailed properties including its spin, CP, and elec-
troweak (EW) quantum numbers. It has been shown in
recent studies [3–8] and also emphasized for quite some
time [9–13], that the decay to four charged leptons is
a powerful channel in accomplishing this goal. Because
of the experimental precision with which this channel is
measured, it offers one of the few opportunities to use an-
alytic methods to analyze the data. We thus seek to ex-
tend previous analytic calculations of both the signal and
the standard model (SM) background and present com-
pletely general, leading order (LO) fully differential cross
sections for the 2e2µ final state mediated by intermediate
Z and γ gauge bosons. In addition to performing discov-
ery/exclusion analysis and signal hypothesis testing one
could, with enough data, experimentally determine all
possible couplings of a spin-0 scalar to pairs of neutral
electroweak (EW) gauge bosons in one multi-parameter
fit using these expressions.

Analytic expressions are ideal for use in the matrix
element method (MEM) taking full advantage of all of
the kinematic information in the event. One can then
use the fully differential cross section to build a likeli-
hood function [14, 15] to be used as a discriminant. For
a recent study of the golden channel comparing existing
leading order MEM-based approaches and software [16],
along with providing code which calculates kinematic dis-
criminants based on the Madgraph [17] matrix element
squared see [18]. We view this ‘analytic approach’ as
equivalent and complementary to these other approaches.
These analytic expressions also allow for more flexibility
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in performing multidimensional fits to determine cou-
pling values which will be useful when performing pa-
rameter extraction. Our parametrization allows for easy
implementation of various hypothesis tests as well as the
addition of NLO effects which can also be implemented
into an MEM framework [19, 20].

For the signal we compute the fully differential decay
width for the process ϕ→ ZZ +Zγ + γγ → 2e2µ where
ϕ is a spin-0 scalar. We allow for the most general CP
odd/even mixtures and include all interference between
intermediate vector bosons. While these expressions are
applicable to the newly discovered boson at 125 GeV,
they are also applicable for any new scalar decaying to
neutral gauge bosons. This allows one to consider a va-
riety of hypotheses which can be tested against one an-
other. It should be emphasized however that for opti-
mal performance, even when testing between two dif-
ferent signal CP and spin hypothesis, one should also
include the background in the discriminant since in any
given sample it is not known with full certainty which are
background and which are signal events. Thus we seek to
provide both signal and background distributions which
can be used together to build a complete likelihood.

For the background we compute the fully differen-
tial cross section for the qq̄ → 2e2µ process. This in-
cludes the contributions from all the intermediate vector
bosons through both t-channel pair production and the
singly resonant four-lepton production s-channel process
qq̄ → Z → 2e2µ. We include all interference effects be-
tween the intermediate vector bosons as well the interfer-
ence between the s-channel and t-channel diagrams which
can affect the differential distributions as we will see be-
low. Also, unlike the analytic calculations in [5, 21] of
the golden channel background differential cross section,
these expressions are valid for a much larger energy range
for the four lepton invariant mass as well as the invariant
mass of each lepton pair. In particular, since these also
include the γγ contribution one can probe lower values
in the differential mass spectrums, which as we will see is
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a highly discriminating region. The intermediate vector
bosons are allowed to be on or off-shell and in what fol-
lows we do not distinguish between the two. We do not
discuss the 4e and 4µ final states explicitly, but in some
kinematic regimes the interference effects between iden-
tical final state particles can be sizable [18]. We leave an
inclusion of these final states to future work.

Although other channels can also probe the tensor cou-
plings of a resonance to neutral gauge bosons, the golden
channel, with a four body final state has the advantage
of extra kinematic variables, such as the azimuthal angle
between lepton decay planes. This variable would be un-
available for example in the γγ final state. In addition to
offering more kinematic observables, the golden channel
offers the unique opportunity to test all of the possible
tensor couplings including any potential interference ef-
fects between the different operators in one direct (and
very precise) fully correlated measurement without any
recourse to theoretical input (other than the production
cross section of course). This allows for stringent tests of
the SM to be performed and perhaps allow us to uncover
new physics which may be hiding in subtle effects within
the golden channel.

In addition to presenting the calculation of the fully
differential cross sections we examine various singly and
doubly differential distributions and elucidate the subtle
interference effects between the different contributions to
the signal and background. Of course a proper treatment
of the golden channel requires careful study of detector
resolution and acceptance effects, but we leave that to
ongoing analyses.

The organization of this paper is as follows: in Sec. II
we briefly review the kinematics of the four lepton final
state. In Sec. III we describe the calculation of the signal
fully differential cross section and examine the differential
mass spectra for a variety of signal hypotheses. In Sec. IV
we describe the calculation of the background fully dif-
ferential cross section and examine how the kinematic
variables are affected by NLO and pdf effects before con-
cluding in Sec. V. We also present in the Appendix a
pair of expressions for the signal and background dou-
bly differential mass spectrums and also show plots for a
multitude of singly and doubly differential spectra.

II. FOUR LEPTON EVENTS

The kinematics of four lepton (4`) events are described
in detail in many places in the literature and here we
use the convention found in [3]. We comment on the
kinematics briefly and point out that in the case of the
background the physical interpretation of the kinematic
variables is not as intuitive as in the case of previous stud-
ies which only considered the t-channel ZZ contribution.
Now since we include the contribution from resonant four
lepton production, the lepton pairs do not necessarily re-
construct to a physical particle. In this case, resonant
production of a Z (or possibly γ) is followed by decay

to charged leptons one of which radiates a Z/γ, which
again decays to charged leptons (see Fig. 4). The first
lepton pair which radiates the second vector boson does
not reconstruct to the Z boson four momentum, which
in this case is also equal to the invariant mass of the 4`
system. The kinematics remain unchanged, but now we
must interpret the angles defined in the lepton pair rest
frame with respect to the direction of momentum of the
lepton pair system as opposed to that of one of the gauge
bosons. Thus, we have the following more general inter-
pretations for the kinematic variables defined in the 4`
rest frame;

• M1,2 – The invariant mass of the two lepton pair
systems.

• Θ – The ‘production angle’ between the momentum
vectors of the lepton pair which reconstructs to M1

and the total 4` system momentum.

• θ1,2 – Polar angle of the momentum vectors of
e−, µ− in the lepton pair rest frame.

• Φ1 – The angle between the plane formed by the
M1 lepton pair and the ‘production plane’ formed
out of the momenta of the incoming partons and
the momenta of the two lepton pair systems.

• Φ – The angle between the decay planes of the final
state lepton pairs in the rest frame of the 4` system.

These variables are all independent subject to the con-
straint (M1 + M2) ≤

√
s where s is the invariant mass

squared of the 4` system. We have also ignored the irrel-
evant azimuthal production angle.

In the case of the signal events one can replace ‘lepton
pair’ momentum with Z or γ momentum since in those
cases, both lepton pairs do indeed decay from a vector
boson and the intuition follows that found in Fig 1. The
same can be said for background events which proceed
through t-channel pair production. In these cases, the an-
gle Φ1 defines the azimuthal angle between the di-boson
production plane and the plane formed by the lepton pair
which reconstructs to M1 and Θ is the vector boson pro-
duction angle. Other than this more subtle interpretation
of the various kinematic variable however, in practice the
definitions of these variables are left unchanged from the
definitions found in [3] which we follow from here on.

III. SIGNAL

In this section we present the calculation of the signal
fully differential cross section and examine the differen-
tial mass spectra for several signal hypothesis. We take
our signal to be a general spin-0 scalar and consider all
possible couplings to any combination of Z and γ pairs
allowing for mixtures of both CP even and odd interac-
tions. Previous studies have analytically computed the
ZZ [3, 4] contribution to the golden channel, but as far
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FIG. 1. Definition of angles in the four lepton CM frame X.

as we are aware, none consider the contributions from the
Zγ and γγ intermediate states. There are also interfer-
ence effects between the intermediate state which are not
present when γ is not allowed to decay. As we will see,
these effects can manifest themselves in the kinematic
distributions. Of course for a SM Higgs, the Zγ and γγ
contributions to the golden channel are expected to be
small, but this need not be true for a general scalar or
if the discovered resonance turns out to have enhanced
couplings to Zγ or to γγ. How large these effects are
once one takes into account detector and acceptance ef-
fects deserves careful study, but we leave this for ongoing
work.

The most general couplings of a spinless particle to
two gauge bosons with four momenta k1 and k2 can be
expressed as,

iΓµνij = v−1
(
A1ijm

2
Zg

µν +A2ij(k1 · k2gµν − kν1k
µ
2 )

+A3ijεµναβk
α
1 k

β
2

)
(1)

where ij = ZZ,Zγ, or γγ. The A1,2,3 are dimensionless
arbitrary complex form factors and v is the Higgs vacuum
expectation value (vev), which we have chosen as our
overall normalization. For the case of a scalar coupling
to Zγ or γγ electromagnetic gauge invariance requires
A1 = 0, while for ZZ it can be generated at tree level
as in the SM or by higher dimensional operators. We
have chosen to write the vertex in this form to make
the connection with operators in the Lagrangian which
may generate them more transparent. For example the
following list of operators may generate a coupling as in
Eq.(1),

L ∼ 1

v
ϕ
(
ghm

2
ZZ

µZµ + gZZ
µνZµν + g̃ZZ

µνZ̃µν

+ gZγF
µνZµν + g̃ZγF

µνZ̃µν

+ gγF
µνFµν + g̃γF

µν F̃µν + ...
)

(2)

where Zµ is the Z field while Vµν = ∂µVν−∂νVµ the usual

bosonic field strengths. The dual field strengths are de-

fined as Ṽµν = 1
2εµνρσV

ρσ and the ... is for operators of
dimension higher than five. For a given model many of
these are of course zero. If ϕ is the Standard Model Higgs,
then gh = i, while gZ , gZγ and gγγ are 6= 0, but loop in-
duced and small. Detailed studies of the ZZ contribution
to the golden channel mediated through the operators
with coefficients gh, gZ were conducted in [4, 6, 22]. The
operators corresponding to gZγ were studied in [8] for the
golden channel final state and in [23] for the `+`−γ final
state and both were shown to be useful discriminators.

Other recent studies of these operators, though not
only through the golden channel final state, have also
been done. The pseudo scalar couplings g̃Z , g̃Zγ , g̃γ were
studied recently in the context of the newly discovered
resonance in [24] where it was shown that a purely CP
odd scalar is disfavored as the new resonance. The anal-
ysis of [25] shows that with a fit of the γγ, ZZ∗, and
WW ∗ rates, as well as the absence of a large anomaly in
continuum Zγ, that the scenario of the four lepton de-
cays being due to gZ or gZγ is strongly disfavored. While
these statements contain few assumptions, they are still
model dependent and should be confirmed by direct mea-
surements.

Even if the newly discovered resonance appears to be
‘SM like’, it is still possible that it can have contributions
to the 2e2µ channel coming from operators other than gh
which are slightly enhanced relative to the SM prediction.
Here we are motivated by asking what information can
be extracted from this channel with out any a-priori ref-
erence to other measurements or theoretical input. In
addition, there still exists the possibility that another
scalar resonance will be discovered which can also decay
to EW gauge boson pairs. In this case it may have com-
parable contributions from the various operators. Thus
we allow for all operators in Eq. (2) to contribute simul-
taneously including all interference effects between the
ZZ, Zγ, and γγ intermediate states. Because the vertex
in terms of arbitrary complex form factors is more gen-
eral than the Lagrangian, for purposes of the calculation
we use Eq.(1) explicitly. Below we summarize the details
of the calculation.

A. Calculation

To compute the process ϕ → ZZ + Zγ + γγ → 4` we
include the diagrams shown in Fig. 2 and parametrize the
scalar coupling to gauge bosons as in Eq. 1. The total
amplitude can be written as,

M =MZZ +MZγ +MγZ +Mγγ (3)

which upon squaring gives,

|M|2 = |MZZ |2 + |MZγ |2 + |MγZ |2 + |Mγγ |2

+2Re
(
MZZM∗

Zγ +MZZM∗
γZ +MZZM∗

γγ

MγγM∗
Zγ +MγγM∗

γZ +MZγM∗
γZ

)
.

(4)
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FIG. 2. Feynman diagrams contributing to ϕ→ 2`12`2. The
arrows are to indicate the direction of momentum flow.

An explicit calculation of all of these terms is overwhelm-
ing, but things can be simplified greatly by taking the fi-
nal state leptons to be massless. In this case, the momen-
tum dependent terms in the Z boson propagator numer-
ators do not contribute. This leads to the propagators of
both Z and γ to have the same Lorentz structure, namely
the Minkowski metric gµν . This implies that all of these
terms have the same general Lorentz structure. The only
difference from these terms comes from Breit-wigner fac-
tors in the propagators as well as in the couplings of the
vector bosons, some of which are zero thus ‘turning off’
the contributions from their corresponding Lorentz struc-
ture. To see this, let us consider the amplitude for any
combination of intermediate Z and γ shown in Fig.2,

Mij = ū2

(
iγγ(gj2RPR + gj2LPL)

)
v2

(
−igνγ

M2
2 −m2

j + imjΓj

)
Γµνij

(
−igµσ

M2
1 −m2

i + imiΓi

)
ū1

(
iγσ(gi1RPR + gi1LPL)

)
v1 (5)

where i, j label Z or γ while 1 and 2 label the final state lep-
tons and can in principal be e or µ. In the 4e and 4µ case one
must also include the interference between identical particles,
but we do not address that issue here1. Upon squaring the
amplitude and summing over final state lepton polarizations
we can obtain a general amplitude squared which encompasses
any of terms in Eq.(4) and is given by,

MijM∗īj̄ = (D1iD2jD
∗
1īD

∗
2j̄)
−1

(gµσT σσ̄1īi gµ̄σ̄)(gνγT γγ̄2jj̄
gν̄γ̄)Γµνij Γ∗µ̄ν̄

īj̄
(6)

where

T σσ̄1īi = (gi1Rg
ī
1R + gi1Lg

ī
1L)Tr( 6 p1γ

σ 6 p1̄γ
σ̄)/2

+(gi1Rg
ī
1R − gi1Lgī1L)Tr( 6 p1γ

σ 6 p1̄γ
σ̄γ5)/2

D1i = M2
1 −m2

i + iΓimi

(7)

1 We have computed it in [26].

and Γµνij are given in Eq.(1). The giR,L are at this point gen-
eral left and right handed couplings of a ‘Z-like’ spin-1 vector
boson to a pair of fermions. The bars are to indicate that
the corresponding index belongs to the conjugated amplitude
and are distinct indices from the un-bared ones. We treat
all couplings at every vertex encountered when tracing over
the Dirac strings as distinct as well as all Breit-Wigner fac-
tors so for any amplitude squared term there can in principal
be four different vector bosons as intermediate states. In the
case of the photon we have of course gγR = gγL = −eem and
mγ = Γγ = 0. Since at this stage the various couplings and
masses are completely general, Eq.(6) applies to any process
where a scalar decays to two spin-1 vector bosons which then
decay to massless fermions through ‘Z-like’ couplings.

Expanding out the terms in Eq.(6) we can write the ampli-
tude squared as,

MijM∗īj̄ = C++
ijīj̄

L++
ijīj̄

+ C+−
ijīj̄

L+−
ijīj̄

+

C−+
ijīj̄

L−+
ijīj̄

+ C−−
ijīj̄

L−−
ijīj̄

=
∑
ab

Cabijīj̄L
ab
ijīj̄

(8)

where a, b = (+,−) with a and b corresponding to the fermion
pairs labeled 1 and 2 respectively and

C±±
ijīj̄

=
(gi1Rg

ī
1R±g

i
1Lg

ī
1L)(g

j
2R
g
j̄
2R
±gj

2L
g
j̄
2L

)

4(D1iD2jD
∗
1ī
D∗

2j̄
)

L±±
ijīj̄

= (gµσT
σσ̄
1± gµ̄σ̄)(gνγT

γγ̄
2±gν̄γ̄)Γµνij Γ∗µ̄ν̄

īj̄
.

(9)

The Tσσ̄1± are the Dirac traces found in Eq.(7) and ± indicates
whether the trace ends with a γ5 (−) or not (+). The full
amplitude squared can then be built out of the objects2 in
Eq.(9),

(MijM∗īj̄)
ab = Cabijīj̄L

ab
ijīj̄ . (10)

Since all of the angular information is contained in the Labijīj̄
we can take advantage of the simple nature of these terms to
perform the desired integration before summing over ± and
the various vector boson intermediate states, after which ana-
lytic integration becomes unmanageable. Expressions for the
Labijīj̄ are obtained in terms of invariant dot products and CM
variables. These objects can be used to build the differential
cross section of any scalar decay to four massless fermions via
two spin-1 vector bosons. From these one can also reproduce
analytic results for other processes such as the semi-leptonic
decay of the Higgs to `νjj [27].

The final fully differential decay width can now be written
as,

dΓϕ
dM2

1dM
2
2dΩ

= Π4`

∑
ab

( ∑
ijīj̄

Cabijīj̄L
ab
ijīj̄

)
(11)

where dΩ = dcΘdcθ2dcθ1dΦdΦ1 (cθ = cos θ) and Π4` is the
final state lepton four body phase space derived following [28]
and given by,

Π4` = (
1

2π
)2(

1

32π2
)2(

1

32πs
)

·
(

1 +
(M2

1 −M2
2 )2

s2
− 2(M2

1 +M2
2 )

s

)1/2

. (12)

2 Expressions for the various coefficients and Lorentz structure can
be obtained by emailing the corresponding author.
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We can obtain the differential mass spectrum3 via,

dΓϕ
dM2

1dM
2
2

= Π4`

∑
ab

( ∑
ijīj̄

Cabijīj̄(
∫
dΩLabijīj̄)

)
. (13)

We note that we perform the sum over vector bosons before
the sum over ± which allows for greater simplification of the
expressions. We can now go on to examine the differential
mass spectrum for different signal hypothesis. In the Ap-
pendix we show various singly and doubly differential spectra
for a number of signal hypotheses. We also give in Eq.(31)
of the Appendix, an explicit expression for the doubly differ-
ential mass spectrum of a scalar with SM-like ZZ couplings
and both CP even and CP odd Zγ couplings including all
interference effects.

B. The Differential Mass Spectra

In this section we examine the singly differential mass spec-
tra for various signal hypotheses and give a feel for how M1

and M2 might be able to distinguish between the different op-
erators in Eq.(2). Explicitly we consider the following cases4,

• 1: SM including Zγ and γγ (A1ZZ = 2, A2Zγ =
0.007, A2γγ = −0.008)5

• 2: SM coupling to ZZ plus enhanced Zγ and γγ
(A1ZZ = 2, A2Zγ = 6 ∗ 0.007, A2γγ = −1.3 ∗ 0.008)

• 3: SM coupling to ZZ plus CP odd couplings to γγ
and Zγ (A1ZZ = 2, A3Zγ = 0.01, A3γγ = 0.01)

• 4: CP odd/even mixed coupling to ZZ only (A1ZZ =
2, A3ZZ = 0.1)

• 5: General Scalar (A1ZZ = 0.1, A2ZZ = 1, A2Zγ =
0.01, A2γγ = 0.01, A3ZZ = 1, A3Zγ = 0.01, A3γγ =
0.01)

where we also show the values for the couplings chosen in
Eq.(1). Couplings whose values are not shown in a given
hypotheses are taken to be zero and we take all values at√
s = mh = 125 GeV. Note that all of these couplings can be

interpreted in terms of the couplings in Eq.(2) if we assume
only up to dimension 5 operators contribute.

We obtain the differential mass spectra via Eq.(13), fol-
lowed by integration over M1 or M2, and compare them for
different hypotheses. These are shown in Fig. 3 for two ranges.
The first range we take 4 GeV< M1,2 < 120 GeV treating M1

and M2 symmetrically shown in the top plot. In this case we
only show the M1 distribution since it is identical to the M2

distribution and only show the lower mass region above which
the different cases are very similar.

We also consider the more ‘experimental’ cut requiring a
wide window around the Z boson mass 40 GeV < M1 <
120 GeV and 4 GeV < M2 < 120 GeV for the ‘off-shell’ vector
boson. In this case the M1 distribution is indistinguishable
for the separate cases so we only show the M2 distribution.

3 We give an analytic expression for a particular hypothesis in the
Appendix.

4 We have validated these cases with FeynRules/CalcHEP [16, 29]
and the Monte Carlo generator introduced in [3].

5 Values obtained from [25] after translating to our parametrazia-
tion.
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FIG. 3. In the top plot we take 4 GeV < M1,2 < 120 GeV
while in the bottom plot we take the range 40 GeV < M1 <
120 GeV, 4 GeV < M2 < 120 GeV at

√
s = mh = 125

GeV when integrating over phase space. The SM is shown
in blue, but is essentially indistinguishable from hypothesis 3
(see text).

One can see, that in particular in the low mass region, these
variables can be highly discriminating between the different
cases. We point out also that, if values of M2 . 10 GeV can
be probed, the requirement of a window around a Z boson
may decrease sensitivity to certain hypotheses which have a
sizable γγ or Zγ component such as hypothesis 5.

Our lower bound on M2 is chosen to be 4 GeV since lower
values of M2 runs the risk of contamination from J/ψ states
whose mass is ∼ 3 GeV. We emphasize that experimental
analyses should be made to push down as far possible since
as can be seen in Fig. 3, one needs to be able to probe M2

below ∼ 10 GeV in order to discriminate between a SM scalar
(hypothesis 1) and one with enhanced Zγ and γγ couplings
(hypothesis 2) for example. Though current experimental sig-
nal searches in the golden do not yet consider such low values
for M2, it seems feasible to push the M2 cut down further as
was done in the CMS observation of the Z → `+`−`+`− pro-
cess [30]. We therefore include this highly interesting region
here and hope that it may motivate efforts to push the M2

reach lower. We leave a complete analysis including detector
effects to an ongoing study.
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IV. BACKGROUND

The dominant irreducible background to the golden chan-
nel comes from qq̄ annihilation into gauge bosons. At energies
∼ 125 GeV the dominant contribution comes from t-channel
Zγ production. However, as we will see contributions from s-
channel Z → 4` diagrams can effect the angular distributions
such as the distribution of the angle between the decay planes
Φ defined in Sec.II. Furthermore, we include the ZZ and γγ
contributions since in principal these are always present and
may have observable interference effects due to the fact that
they add at the amplitude level when decaying to charged lep-
tons. In addition, the inclusion of these contributions allows
for considering a much larger energy range in one fully dif-
ferential cross section than can be considered when including
only the t and u channel contributions. Of course NLO ef-
fects, including the gg initiated process [31–33] will contribute
as well, but these are expected to be small and mainly only
effect the ‘input’ invariant mass (and overall normalization)
for the fully differential cross sections. We will examine this
point below.

It should also be noted that ideally one would like to include
the 4e and 4µ final states which in some kinematic regimes can
have non-negligible contributions from interference between
final state particles [18]. The inclusion of this channel would
allow for greater sensitivity for the same amount of luminosity.
However, because of the interference between identical final
states in this case, the Lorentz structure becomes severely
more complicated and we thus leave this calculation for future
work.

A. Calculation

The background calculation is much more involved than
the signal calculation due to a higher number of Feynman
diagrams in addition to a more complicated Lorentz structure.
As in the signal case the amplitude can be written as,

M =MZZ +MZγ +MγZ +Mγγ . (14)

Now however, each of these amplitudes breaks down into six
‘sub-amplitudes’. To see this, let us first consider the ZZ me-
diated decays. There are three diagrams which contribute to
the 2e2µ process shown in Fig. 4. First there is the t-channel
contribution shown in the bottom diagram. This contribution
(and its u-channel counterpart) has been computed previously
for both on-shell [21] and off-shell [5] Z bosons. The second
contribution comes from resonant 2e2µ production proceed-
ing through the top two diagrams. Each of these diagrams
also has a corresponding ‘crossed’ diagram taking into account
the other possibility for attaching the vector boson lines. This
gives six diagrams for the ZZ contribution to the golden chan-
nel. Similarly, there are six more for the γγ contribution plus
six for Zγ and six for γZ giving a total of twenty four dia-
grams. At first this many diagrams can seem intractable, but
as we will see, when organized in a proper manner the calcu-
lation is relatively straightforward with the help of Tracer [34]
to perform the Lorentz contraction.

To begin we first note that the six diagrams can be ‘twisted’
and arranged into the form found in Fig. 5 where we now al-
low the vector bosons to take on any Z or γ, but once chosen
are treated as fixed. We use the conventions indicated in
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FIG. 4. Feynman diagrams contributing to qq̄ → ZZ → 2e2µ
and qq̄ → Z → 2e2µ. The arrows are to indicate the direction
of momentum flow.
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ē

e

kqt

j

i

q

q̄

2̄

2

1̄

1

k1t

j

i

1̄

1

2̄

2

q̄

q

k2t

j

i

2̄

2

q̄

q

1̄

1

Z

Z

q

q̄

µ̄

µ

ē
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FIG. 5. Feynman diagrams contributing to qq̄ → ViVj →
2`12`2 and qq̄ → Vi → 2`12`2. Note that diagrams (c) − (f)
are in fact s-channel diagrams so the fermions labeled by 1
and 2 are not to be confused as being in the initial state.
This is taken into account in how the various momenta are
assigned as indicated by the arrows.

the diagrams and in particular refer to the diagrams (a), (c),
and (e) as ‘t-channel’ type diagrams and (b), (d), and (f) as
‘u-channel’. This is not to be confused with the typical vo-
cabulary for this process which refers to diagrams (a) and (b)
as t and u channel and diagrams (c) − (f) as s-channel. We
find this re-naming convenient for organizing and reducing
the many terms which need to be computed for the differen-
tial cross section. The Lorentz structure for all of these am-
plitudes is clearly the same. One needs only to keep proper
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track of how the various momentum are routed through each
diagram. We can see this by considering the amplitude ex-
plicitly. Using the massless initial quark and final state lepton
approximation we can write any of the amplitudes in Fig. 5
as,

Mn
Xij = ūZ

(
iγσ(gjZRPR + gjZLPL)

)
vZ

(
−igµσ

M2
Z
−m2

j+imjΓj

)
v̄X
(
iγµ(giXRPR + giXLPL)

) (
i6kXn
k2
Xn

) (
iγν(gjXRPR + gjXLPL)

)
uX(

−igνγ
M2
Y
−m2

i+imiΓi

)
ūY
(
iγγ(giY RPR + giY LPL)

)
vY

(15)

where we label the amplitude by the ‘long’ dirac string, in this
case X. The labels X/Y/Z = 1, 2, q where 1, 2 are for final
state lepton pairs while q is for the initial state quarks. The
i, j = Z, γ label the vector bosons and n = t, u labels the t
and u-channel diagrams in our new vocabulary. The invariant
masses are defined as M2

Y = (pY +pȲ )2. The internal fermion
momentum are given in terms of external momentum by,

kqt = pq − (p1 + p1̄), kqu = pq − (p2 + p2̄)

k1t = −p1̄ − (p2 + p2̄), k1u = (pq + pq̄)− p1̄

k2t = (pq + pq̄)− p2̄, k2u = −p2̄ − (p1 + p1̄) . (16)

Note that the invariant masses MY and MZ do not necessar-
ily correspond to the invariant mass formed by the final state
lepton pairs, as they do in the signal case and in previous
analytic calculations of the golden channel background which
neglect the s-channel diagrams. Now with the inclusion of the
resonant four lepton processes in (c) − (f) we have for these
diagrams M2

Y/Z = M2
q = s which is equal to the invariant

mass of the four lepton system. To obtain any of the phys-
ical amplitudes one simply assigns the appropriate labels to
Eq.(15) as well as the appropriate momenta. Thus for exam-
ple for diagram (c) we have X → 1, Y → q, Z → 2, and
n→ t. To switch from t-channel type to u-channel diagrams
(staying in the same row in Fig.5) one simply takes t → u
and γσ ↔ γγ . Of course at this stage all these labels are
arbitrary meaning that the amplitude in Eq.(15) applies to
any process with this topology and Lorentz structure. Note
that for the Z propagators we drop the momentum dependent
terms since they do not contribute in the massless lepton ap-
proximation. As mentioned in the signal case, for the photon
gγR = gγL and mγ = Γγ = 0, but for now we take the couplings
and propagators as general.

As in the case of the signal, the next step is to find a gen-
eralized amplitude squared for any two of the six diagrams.
Although there are in principal thirty six terms when squar-
ing the amplitudes, these organize themselves into only two
distinct types of Lorentz structure. The first type is found
when multiplying any two diagrams in the same row of Fig. 5.
This is the Lorentz structure found in our previous calcula-
tions of the ZZ contribution in which only diagramsMqt and
Mqu are included (the top row). The square of M1t +M1u

and M2t +M2u (second and third rows) will also exhibit
this Lorentz structure. The second type of Lorentz structure
is obtained when taking the product of any two diagrams
in different rows. In the conventional language, interference
between the first and second row or first and third row cor-
responds to interference between the t-channel di-boson pro-
duction amplitudes and the s-channel diagrams. Interference
between the second and third row corresponds to interference
between the two types of s-channel diagrams. We first dis-
cuss the ‘squared’ terms where the amplitudes are contained

within the same row before examining the interference terms
between rows.

Using the conventions just described, we can write the
product of any two amplitudes within a row as

Mn
XijMm∗

Xīj̄ = (DY iDZjD
∗
Y īD

∗
Zj̄)
−1

(gµσT σσ̄Y īigµ̄σ̄)(gνγT γγ̄Zjj̄gν̄γ̄)T νµµ̄ν̄
Xijīj̄nm

(17)

where the T σσ̄Y īi and DY i are defined similarly to those in
Eq.(7) and the long Dirac string is given by,

T νµµ̄ν̄
Xijīj̄nm

= (giXRg
j
XRg

ī
XRg

j̄
XR + giXLg

j
XLg

ī
XLg

j̄
XL)/2

·Tr( 6 pXγν 6 kXnγµ 6 pX̄γµ̄ 6 kXmγν̄) +

(giXRg
j
XRg

ī
XRg

j̄
XR − g

i
XLg

j
XLg

ī
XLg

j̄
XL)

·Tr(6 pXγν 6 kXnγµ 6 pX̄γµ̄ 6 kXmγν̄γ5)/2.

(18)

Expanding out the terms in Eq.(17) we can organize in a
manner similar to Eq.(8) and write the amplitude squared as,

Mn
XijMm∗

Xīj̄ =
∑
abc

CabcXXijīj̄L
abc
XXnm (19)

where again a, b, c = (+,−) in the order X,Y, Z and

C±±±
XXijīj̄

= (8DY iDZjD
∗
Y īD

∗
Zj̄)
−1

(giXRg
j
XRg

ī
XRg

j̄
XR ± g

i
XLg

j
XLg

ī
XLg

j̄
XL)

·(giY RgīY R ± giY LgīY L)(gjZRg
j̄
ZR ± g

j
ZLg

j̄
ZL)

L±±±XXnm = (gµσT
σσ̄
Y±gµ̄σ̄)(gνγT

γγ̄
Z±gν̄γ̄)T νµµ̄νXnm±.

(20)

The Tσσ̄Y,Z± are the Dirac traces found in Eq.(7) while the

T νµµ̄νXnm± are those found in (18). Again ± indicates whether

the trace ends with a γ5 (−) or not (+). We note that unlike
in the signal case, when organized in this way (essentially by
powers of γ5) the gauge structure completely factors from the
Lorentz structure. This allows us to sum over all possible
intermediate vector bosons at this stage to write,

Mn
XMm∗

X =
∑
ijīj̄

Mn
XijMm∗

Xīj̄

=
∑
ijīj̄

∑
abc

CabcXXijīj̄L
abc
XXnm

=
∑
abc

(
∑
ijīj̄

CabcXXijīj̄)L
abc
XXnm =

∑
abc

CabcXXL
abc
XXnm .

(21)

This simplifies things greatly and in particular the objects
CabcXX now contain all of the information regarding the interme-
diate vector bosons including the interference effects between
the different processes. These will serve as overall coefficients
for the various Lorentz structure pieces.

We are now in a position to examine the interference terms.
Let us take the product of any two diagrams not in the same
row. One can show explicitly,

Mn
XijMm∗

Y īj̄ = (DY iDZjD
∗
ZīD

∗
Xj̄)
−1

(gµσT νµγ̄Xijj̄n
gν̄γ̄)(gνγT µ̄ν̄σY īij̄m

gµ̄σ̄)T γσ̄
Zjī

(22)

where the T γσ̄
Zīi

are as before and the new Dirac strings are
given by,

T νµγ̄
Xijj̄n

= (giXRg
j
XRg

j̄
XR + giXLg

j
XLg

j̄
XL)/2

·Tr(6 pXγν 6 kXnγµ 6 pX̄γγ̄) +

(giXRg
j
XRg

j̄
XR − g

i
XLg

j
XLg

j̄
XL)

·Tr( 6 pXγν 6 kXnγµ 6 pX̄γγ̄γ5)/2.

(23)
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The distinct Lorentz structure found here as compared to
that found in Eq.(17) is due to the different path taken when
tracing over the fermonic strings.

Again we expand out the terms in Eq.(22) to obtain,

Mn
XijMm∗

Y īj̄ =
∑
abc

CabcXY ijīj̄L
abc
XY nm (24)

where,

C±±±
XY ijīj̄

= (8DY iDZjD
∗
ZīD

∗
Xj̄)
−1(gjZRg

ī
ZR ± gjZLg

ī
ZL)

·(giXRgjXRg
j̄
XR ± g

i
XLg

j
XLg

j̄
XL)(giY Rg

ī
Y Rg

j̄
Y R ± g

i
Y Lg

ī
Y Lg

j̄
Y L)

L±±±XY nm = (gµσT
νµγ̄
Xn gν̄γ̄)(gνγT

µ̄ν̄σ
Y m gµ̄σ̄)T γσ̄Z .

(25)

and the T νµγ̄Xn are the traces found in Eq.(23). As mentioned
above, since the gauge and Lorentz structure factor com-
pletely we are free to perform the sum over the intermediate
vector bosons at this stage once again to obtain the various
Lorentz structure coefficients,

Mn
XMm∗

Y =
∑
ijīj̄

Mn
XijMm∗

Y īj̄ =

∑
abc

(
∑
ijīj̄

CabcXY ijīj̄)L
abc
XY nm =

∑
abc

CabcXY L
abc
XY nm .

(26)

Thus again all of the information concerning the intermedi-
ate vector bosons is contained in CabcXY . We now have all of
the pieces6 necessary to build the total amplitude squared of
the diagrams in Fig. 5 including all contributions from the
intermediate vector bosons. Explicitly we have,

|Mq +M1 +M2|2

=
∑
abc

∑
nm

((
Cabcqq L

abc
qqnm + Cabc11 L

abc
11nm + Cabc22 L

abc
22nm

)
+2Re

(
Cabcq1 L

abc
q1nm + Cabc12 L

abc
12nm + Cabc2q L

abc
2qnm

)) (27)

where the sum over intermediate vector bosons has been al-
ready implicitly performed and the sum over n,m which in-
cludes the t and u channel contributions is shown explicitly
(note that this also factors from the vector boson sum). The
CabcXY coefficients are in general complex due to the factor of
i multiplying the decay width in the massive vector boson
propogators. The Lorentz structure is either purely real or
purely imaginary depending on whether the term contains an
even or odd number of traces ending in γ5. These traces give
an overall factor of i (and an epsilon tensor). Thus if LabcXY nm
contains an even number of these traces, then it is purely real
and if it contains an odd number it is purely imaginary. The
squared Lorentz structure LabcXXnm however is strictly real as
are the squared coefficients CabcXX . Taking this into account,

6 Expressions for the various coefficients and Lorentz structure can
be obtained by emailing the corresponding author.

we can write for Eq.(27) the final amplitude squared as,

|M4`|2 = |Mq +M1 +M2|2

=
1

2

even∑
abc

(
CabcqqRL

abc
qqR + Cabc11RL

abc
11R + Cabc22RL

abc
22R

)
+

even∑
abc

(
Cabcq1RL

abc
q1R + Cabc12RL

abc
12R + Cabc2qRL

abc
2qR

)

−
odd∑
abc

(
Cabcq1IL

abc
q1I + Cabc12IL

abc
12I + Cabc2qIL

abc
2qI

)
(28)

where we have now performed the sum over t and u channel
diagrams and CabcXY R,I = CabcXY ± C∗abcXY respectively. We have
also implicitly included a factor of 1/4 from averaging over
initial state quark spins and a color factor of 1/3. The sums
labeled even ≡ (+ + +,+−−,−+−,−−+) indicate terms
with even powers of γ5 and those with odd ≡ (− + +,+ −
+,+ +−,−−−) indicate terms with odd powers of γ5. Note
that since the photon has vector like couplings where gL = gR
all coefficients CabcXY with a, b, or c ≡ − are zero for the γγ
intermediate state. Thus γγ only contributes to the C+++

XY

coefficients (including of course when X ≡ Y ).
Previous calculations of the golden channel background,

which include only the di-boson production process, are con-
tained within the first term Cabcqq L

abc
qq of Eq.(28). All the other

terms arise from the resonant four lepton production process
and the interference between it and the di-boson production
process. Note that Eq.(28) is also more general than for just
the golden channel. In principal this expression holds for
any process with the same topology and ‘Z-like’ couplings
to fermions. Since we have built the expression out of a gen-
eralized Lorentz structure with coefficients, it can easily be
adapted to consider new physics contributions which may en-
ter with the same topology and alter some of the coefficients
by an observable amount. Thus one can imagine performing
stringent tests of the SM using this parametrization to ex-
tract the various Lorentz structure coefficients. We leave an
investigation of this to future work.

The final fully differential cross section7 is again obtained
by combining the amplitude squared with the invariant four
body phase space (see Eq.(12)),

dσ4`

dM2
1dM

2
2dΩ

= Π4`|M4`|2 . (29)

The differential mass spectrum8 is obtained again via,

dσ4`

dM2
1dM

2
2

= Π4`

∫
dΩ|M4`|2 . (30)

We now examine how the various components of the back-
ground contribute to the differential mass spectrum.

B. The Differential Spectra

In this section we examine how the individual components
of the background contribute to the invariant mass spectrum

7 This expression has been validated with the Madgraph matrix
element squared.

8 An analytic expression for the dominant component to the back-
ground is given in Eq.(33) of the Appendix.
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of the four lepton system. In addition we also study how in-
cluding parton distribution functions (pdfs) and NLO correc-
tions change the differential spectra by comparing normalized
projections obtained from our analytic expression to Monte
Carlo generated by POWHEG [35–38] and Madgraph [17].

We first separate the background into its various compo-
nents which we define as the following,

• A: s-channel 2e2µ process

• B: t+ u-channel γγ

• C: t+ u-channel ZZ

• D: t+ u-channel Zγ

• E: t+ u-channel ZZ/Zγ/γγ interference only

• F: ZZ + Zγ + γγ s/t-channel interference only

where now s, t, and u are used in the usual sense and the res-
onant s-channel 2e2µ process can proceed through any com-
bination of Z and γ. We first consider the relative fractions
of these components as a function of the invariant mass of the
four lepton system for the range 100−600 GeV in Fig. 6. The
dotted lines indicate when a contribution is negative, which
of course only occurs for interference terms in certain energy
ranges when the interference is destructive. The solid black
line at constant value of 1 is the total partonic level qq̄ → 2e2µ
(q = u, d) background including all interference and all inter-
mediate vector bosons. From Fig. 6 one can see how the
relative contributions coming from the different components
change as a function of energy.

Component C (the ZZ t + u channel) is the only piece of
the background to have been previously calculated analyti-
cally [5, 21]. This makes up the dominant contribution above
the ZZ threshold, but is negligible from 110 GeV <

√
s < 140

GeV and in fact is even smaller than the interference terms.
We also plot the spectrum if one requires a window around
the Z boson mass in the bottom plot of Fig. 6. The dominant
component near the resonance mass of 125 GeV is D regard-
less of the window on the Z mass. Except for component F ,
one can see that the relative fractions are fairly insensitive to
the Z window requirement except in the range ∼ 100 − 110
GeV.

The flexibility of the analytic expressions also allow us to
easily isolate the contribution coming from interference terms.
Component E for example is due to the interference between
the intermediate gauge bosons in the t + u channel and is
destructive over the entire range regardless of the Z window.
The interference between the resonant s-channel and the t-
channel pair production processes is shown in F and switches
between constructive and destructive if one requires a window
around the Z, but otherwise is constructive. Though these
components are small it is possible for them to have subtle
effects on the angular distributions such as in the modulation
of the azimuthal angle Φ (See Fig. 13) and may be partic-
ularly interesting to study in the range 100 GeV .

√
s .

110 GeV. The expressions for most of the components them-
selves are too cumbersome to write here, but in the Appendix
we give the expression for the doubly differential (M1,M2)
mass spectrum of the full t+ u (the sum of B-E) component
which as we can see in Fig. 6 and Fig. 7 provides a very good
approximation above

√
s ∼ 110 GeV.

To examine the effects of NLO contributions and pdfs we
compare our parton level result for qq̄ → 2e2µ (q = u, d) to
Monte Carlo data generated by the NLO POWEG and LO
Madgraph codes which include pdfs [39]. For this we define
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FIG. 6. The four lepton system invariant mass spectrum
(without pdfs) for the various components defined in the text.
The dotted lines indicate when the interference between com-
ponents is destructive, thus giving a negative contribution.
In the top plot we take the ranges 4 GeV< M1,2 < 120 GeV
while in the bottom plot we take the range 40 GeV< M1 <
120 GeV and 10 GeV< M2 < 120 GeV while taking M1 >
M2.

our phase space as 40 GeV < M1 < 120 GeV and 10 GeV
< M2 < 120 GeV for the energy range 110 GeV<

√
s <

140 GeV. We also plot the t + u component only (defined
as the sum of B-E) to examine what affects neglecting the
resonant 2e2µ process has.

In Fig. 7-9 we show the kinematic distributions where it
can be seen that NLO and pdf contributions affect the nor-
malized spectra negligibly. In addition we can see that ne-
glecting the resonant process also has little effect on all the
kinematic variables except Φ, where it affects the modula-
tion and in the forward regions of cos θ1. As we will see in
the Appendix, the modulation is due almost entirely to the
resonant process. These distributions simply reflect the fact
that the various kinematic distributions are not highly corre-
lated with

√
s allowing us to take

√
ŝ essentially as an input

from the pdfs. To build a complete hadronic differential cross
section one could convolve the

√
s spectrum obtained from

Madgraph or POWHEG with the partonic differential cross
section obtained analytically. This of course is what would
be done for an LHC analysis, but we do not do that here and
instead simply integrate our partonic differential cross section
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FIG. 7. Comparing the LO and NLO results for the M1 and
M2 invariant mass spectra for the ranges 40 GeV < M1 <
120 GeV and 10 GeV < M2 < 120 GeV. We take the range of
the four lepton system invariant mass to be 110 <

√
s < 140

GeV.

over
√
ŝ.

From Figs. 6 and 7 we expect the doubly differential spec-
trum obtained from the t + u component only to be a good
approximation which could be useful for a simplified analysis.
We give an explicit expression for this component in Eq. (33)
of the Appendix. Though it does not use all of the kinematic
variables, it should still have strong discriminating power and
can be used with the methods proposed in [7] to form a pow-
erful simplified study.

V. CONCLUSIONS AND OUTLOOK

We have calculated and presented analytic fully general
differential cross sections for the golden channel signal and
background in the 2e2µ final state including all intermediate
vector bosons and interference effects. We have presented var-
ious singly and doubly differential spectra and examined how
the different interference effects manifest themselves in these
distributions and in correlations between the different kine-
matic variables. We have also emphasized the need to push
the ‘off-shell’ invariant mass (M2) reach as low as possible as
well as relaxing the ‘Z-window’ to maximize the discriminat-
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FIG. 8. Comparing the LO and NLO results for the polar
angles cos Θ, cos θ1, cos θ2 for the ranges 40 GeV < M1 <
120 GeV and 10 GeV < M2 < 120 GeV. We take the range of
the four lepton system invariant mass to be 110 <

√
s < 140

GeV.

ing power when testing different signal hypothesis. We have
shown that the expressions can aid in distinguishing between
different signal hypotheses and because signal and background
are provided, both can be included into one likelihood, as
should be done when performing simple hypothesis tests of
different signals. These expressions can be implemented into
an MEM analysis to perform detailed studies of the spin and
CP properties of any scalar resonance which has been or may
be discovered at the LHC.
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VI. APPENDIX

The general scalar and background differential spectra are
too cumbersome to write in one page9 for most of the differ-
ent components. We give a couple of the simplest ones here,
but that are not found in literature. We also examine how
the different signal hypotheses and background components
contribute to the various kinematic distributions. We show
a multitude of singly and doubly differential distributions for
both signal and background. Of course none of these plots can
show the discriminating power of the fully differential cross
section, but one can visually get a sense for the discriminat-
ing power of these kinematic variables. Detector effects will

also shape these distributions and deserve careful study, but
it is clear that the golden channel is a powerful probe of the
underlying physics.

A. Analytic Expressions

We give here a pair of analytic expressions for the differ-
ential mass spectra for one of the signal and one of the back-
ground components which are simple enough to fit on one
page. Although not as powerful as using the fully differential
cross section, with just these two relatively simple expressions
one can perform robust analyses of the newly discovered scalar
and its coupling to neutral gauge bosons as suggested in [7].
For the signal we give the ϕ→ ZZ + Zγ → 2e2µ differential
mass spectrum including interference. For the ZZ coupling
we take only the ‘SM-like’ coupling A1ZZ to be non-zero. For
the Zγ coupling we allow for both A2Zγ and A3Zγ to be non-
zero, thus allowing for CP violation. Using Eq.(13) we obtain,

dΓSM+Zγ

dM2
1 dM

2
2

=(√
M4

1 + (M2
2 − s)2 − 2M2

1 (M2
2 + s)

(
6A1ZZA2ZAel(gL + gR)(g2

L + g2
R)M1M2m

2
z(2M

2
1M

2
2 − (M2

1 +M2
2 )m2

z)(−1 + β2
1)

(1 + β1β2)(−1 + β2
2) +A2

1ZZ(g2
L + g2

R)2M2
1M

2
2m

4
z

√
1− β2

1

√
1− β2

2(3 + 2β1β2 − 2β2
2 + β2

1(−2 + 3β2
2)) + 2e2

l

√
1− β2

1

√
1− β2

2

(2A2
3ZA(β1 + β2)2 +A2

2ZA(3− β2
1 + 4β1β2 + (−1 + 3β2

1)β2
2))
(

2gLgRM
2
1M

2
2 ((M1 −mz)(M2 −mz)(M1 +mz)(M2 +mz) +m2

zΓ
2
z)

+g2
L(M4

2m
2
z(m

2
z + Γ2

z) +M2
1M

2
2m

2
z(−3M2

2 +m2
z + Γ2

z) +M4
1 (3M4

2 − 3M2
2m

2
z +m4

z +m2
zΓ

2
z)) + g2

R(M4
2m

2
z(m

2
z + Γ2

z)

+M2
1M

2
2m

2
z(−3M2

2 +m2
z + Γ2

z) +M4
1 (3M4

2 − 3M2
2m

2
z +m4

z +m2
zΓ

2
z))
)))

/(
4608π4s2v2

h(1− β2
1)3/2(1− β2

2)3/2((M2
1 −m2

z)
2 +m2

zΓ
2
z)((M

2
2 −m2

z)
2 +m2

zΓ
2
z)
)

(31)

9 The distributions will be made public in the near future, but can
be obtained from the corresponding author in the meantime.
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where we define,

β1,2 =

√√√√1− 4M2
1(

1± (M2
1 −M2

2 )/s
)2

s
. (32)

This expression is frame invariant and can accommodate a
Higgs-like particle with SM couplings to ZZ, but with perhaps

new physics contributions through its couplings to Zγ. The
el are the photon couplings to charged leptons while gL,R
are the leptonic Z couplings. M1 and M2 are the final state
lepton pair invariant masses while mZ is the mass of the Z
boson and

√
s is the four lepton system invariant mass. The

doubly differential mass spectrum for the full t+u component
of the background (sum of components B-E) can be obtained
analytically via Eq. (30) to give,

dσBGt+u
dM2

1 dM
2
2

=

−
(

((g4
qL + g4

qR)(g2
L + g2

R)2M4
1M

4
2 + 2eleq(g

3
qL + g3

qR)(gL + gR)(g2
L + g2

R)M2
1M

2
2 (2M2

1M
2
2 − (M2

1 +M2
2 )m2

z)

+ 8e4
l e

4
q((M

2
1 −m2

z)
2 +m2

zΓ
2
z)((M

2
2 −m2

z)
2 +m2

zΓ
2
z) + 4e3

l e
3
q(gqL + gqR)(gL + gR)((M2 −mz)(M2 +mz)(−M2

1 +m2
z)

(−2M2
1M

2
2 + (M2

1 +M2
2 )m2

z) +m2
z(M

4
1 +M4

2 − (M2
1 +M2

2 )m2
z)Γ

2
z) + 2e2

l e
2
q(g

2
qL + g2

qR)(4gLgRM
2
1M

2
2 (M1 −mz)(M2 −mz)

(M1 +mz)(M2 +mz) + g2
L((−2M2

1M
2
2 + (M2

1 +M2
2 )m2

z)
2 + (M4

1 +M4
2 )m2

zΓ
2
z) + g2

R((−2M2
1M

2
2 + (M2

1 +M2
2 )

m2
z)

2 + (M4
1 +M4

2 )m2
zΓ

2
z)))

(
4(M2

1 +M2
2 − s)

√
M4

1 + (M2
2 − s)2 − 2M2

1 (M2
2 + s)− ((M2

1 +M2
2 )2 + s2)(

log
[(
M2

1 +M2
2 − s+

√
M4

1 + (M2
2 − s)2 − 2M2

1 (M2
2 + s)

)2]
− 2 log

[
−M2

1 −M2
2 + s+

√
M4

1 + (M2
2 − s)2 − 2M2

1 (M2
2 + s)

])))
/(

27648 M2
1M

2
2π

5(M2
1 +M2

2 − s)s2((M2
1 −m2

z)
2 +m2

zΓ
2
z)((M

2
2 −m2

z)
2 +m2

zΓ
2
z)
)
. (33)

This expression includes the ZZ, Zγ and γγ contributions
including all interference and can be combined with pdfs or
be used for a leptonic initial state. The eq are the photon
couplings to the initial state fermions while the gqR/L are the
initial state fermion couplings to Z bosons. Note that these
expressions have not been normalized and should be thought
of as at fixed s.

B. Singly Differential Angular Distributions

In Fig. 10-14 we show the angular distributions for the
5 angles (cos Θ, cos θ1, cos θ2,Φ1,Φ) found in the four lepton
system and defined in Sec. II. We plot the angular distribu-
tions for signal hypotheses 1-5 defined in Sec. III B and also
show the various background components defined in Sec. IV B.
For all distributions the phase space is defined as 4 GeV
< M1 < 120 GeV and 4 GeV < M2 < 120 GeV with√
ŝ = 125 GeV for signal and 110 GeV <

√
ŝ < 140 GeV

for background.
Since we are considering a spin-0 scalar as our signal, the

cos Θ and Φ1 are of course flat, but are still useful for dis-
criminating between signal and background. A particularly
interesting variable is the azimuthal angle between the lepton
decay planes, Φ. This is especially sensitive to the various
interference effects as well as the CP properties of the decay-
ing scalar, as was pointed out in [22]. One can see that the
different signal hypothesis affect the modulation of Φ while
an extreme case like the CP violating hypothesis 5 can lead
to a striking signal in the form of an asymmetric modulation
and phase shift relative to the SM prediction.

For the background we can see how the various components
contribute to the different kinematic variables. It is clear that
the Zγ t+u component (D) is the dominant contribution for
our defined phase space. Note however, that the s-channel

component (A) also contributes and in particular is the dom-
inant contribution to the modulation of Φ. We can also see
that the resonant process affects cos θ1 and cos θ2, especially
in the forward regions. It is also interesting to comment that
the γγ contribution (B) is featureless in all of the distribu-
tions except for a small upward slope in the extreme forward
directions of cos Θ. Note that for the Φ1 azimuthal angle, the
modulation is due entirely to the Zγ t + u component (D).
Whether these different effects can still be seen once detector
effects are included requires careful study which we leave for
future work.

C. Doubly Differential spectra

In Fig. 15-21 we show various combinations of the doubly
differential spectra for the five signal hypotheses as well as the
full background. These are primarily for illustration purposes,
but from these one can get an idea of the correlations between
the different kinematic variables10. For these plots only the
five signal hypotheses and the full result for the background
are shown. For all distributions the phase space is defined as
4 GeV < M1 < 120 GeV and 4 GeV < M2 < 120 GeV with√
ŝ = 125 GeV for signal and 110 GeV <

√
ŝ < 140 GeV for

background.

10 We do not show all possible combinations, but any not shown
here can be obtained by emailing the corresponding author
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FIG. 10. On the left hand side we have plotted the cos Θ angular distributions for hypotheses 1-5 (hypothesis 1 ≡ SM) defined
in Sec.III B. On the right hand side we plot the components A-F of the background defined in Sec.IV B.
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FIG. 11. On the left hand side we have plotted the cos θ1 angular distributions for hypotheses 1-5 (hypothesis 1 ≡ SM) defined
in Sec.III B. On the right hand side we plot the components A-F of the background defined in Sec.IV B.
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FIG. 12. On the left hand side we have plotted the cos θ2 angular distributions for hypotheses 1-5 (hypothesis 1 ≡ SM) defined
in Sec.III B. On the right hand side we plot the components A-F of the background defined in Sec.IV B.
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FIG. 13. On the left hand side we have plotted the Φ angular distributions for hypotheses 1-5 (hypothesis 1 ≡ SM) defined in
Sec.III B. On the right hand side we plot the components A-F of the background defined in Sec.IV B.
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FIG. 15. The (M2, cos Θ) doubly differential spectrum. The first five distributions are for signal hypotheses 1-5 (hypothesis
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FIG. 16. The (M2, cos θ1) doubly differential spectrum. The first five distributions are for signal hypotheses 1-5 (hypothesis
1 ≡ SM in top left) defined in Sec.III B while the bottom right plot is for the full background.
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FIG. 17. The (M2,Φ) doubly differential spectrum. The first five distributions are for signal hypotheses 1-5 (hypothesis 1 ≡
SM in top left) defined in Sec.III B while the bottom right plot is for the full background.
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FIG. 18. The (cos θ2,Φ1) doubly differential spectrum. The first five distributions are for signal hypotheses 1-5 (hypothesis
1 ≡ SM in top left) defined in Sec.III B while the bottom right plot is for the full background.
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FIG. 19. The (cos θ1, cos θ2) doubly differential spectrum. The first five distributions are for signal hypotheses 1-5 (hypothesis
1 ≡ SM in top left) defined in Sec.III B while the bottom right plot is for the full background.
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FIG. 20. The (Φ, cos θ1) doubly differential spectrum. The first five distributions are for signal hypotheses 1-5 (hypothesis 1 ≡
SM in top left) defined in Sec.III B while the bottom right plot is for the full background.
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FIG. 21. The (Φ,Φ1) doubly differential spectrum. The first five distributions are for signal hypotheses 1-5 (hypothesis 1 ≡
SM in top left) defined in Sec.III B while the bottom right plot is for the full background.
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